• Introduction
  • Theory
  • Guides
  • Tutorials
  • FAQ
  • Articles
  • Documentation
  • PDF
Search Results for

    Show / Hide Table of Contents
    • Changelog
    • Contributing
    • Code paths
    • Debugging
    • Code of conduct
    • Commands
      • Help
      • Analyze Long Recording
      • False Colour Spectrograms
      • Concatenate Index Files
    • Config files
      • GenericRecognizerConfig
      • CommonParameters
      • OscillationParameters
      • HarmonicParameters
      • PostProcessingConfig
      • AnalyzerConfig
    • API
      • Acoustics.Shared
        • AnalysisIo
        • AnalysisIoInputDirectory
        • AppConfigHelper
        • Base58
        • Binary
        • ByteCountFormatter
        • DateTimeFormatter
        • FileDateHelpers
        • FilenameHelpers
        • ImageChrome
        • Interval<T>
        • IntervalExtensions
        • InvalidDataSetException
        • InvalidFileDateException
        • IOrderer<TOrder>
        • Json
        • Json.IntervalConverter
        • Json.LegacyTimeSpanDataConverter
        • MediaTypeExtGroup
        • MediaTypeGroup
        • MediaTypes
        • Meta
        • MultiException
        • NonClosingStreamWrapper
        • OrderCoordinator<T>
        • Orderer<TOrder, TOrderProperty>
        • PathDiagnostics
        • PathDiagnostics.PathDiffReport
        • PathUtils
        • Plugins
        • ProcessRunner
        • ProcessRunner.ProcessMaximumRetriesException
        • SortDirection
        • SpectrogramType
        • SunTimes
        • SunTimes.Coords
        • SunTimes.LatitudeCoords
        • SunTimes.LatitudeCoords.Direction
        • SunTimes.LongitudeCoords
        • SunTimes.LongitudeCoords.Direction
        • TempFileHelper
        • TimeSpanFormatter
        • Topology
        • TwoDimensionalArray
        • Validation
        • ValidationExtensions
        • Yaml
        • YamlTypeTagAttribute
      • Acoustics.Shared.ColorScales
        • ColorBrewer
        • ColorBrewer.DivergingPalettes
        • ColorBrewer.QualitativePalettes
        • ColorBrewer.SequentialMultipleHuesPalettes
        • ColorBrewer.SequentialSingleHuePalettes
        • Palette
        • Type
      • Acoustics.Shared.ConfigFile
        • Config
        • ConfigFile
        • ConfigFileException
        • ConfigFileExtensions
        • ConfigSerializeContractResolver
        • IConfig
        • INamedProfiles<T>
        • IProfiles<T>
      • Acoustics.Shared.Contracts
        • Contract
      • Acoustics.Shared.Csv
        • Csv
        • CsvIntervalConverter
        • CsvSetPointConverter
        • TopologyEnumConverter
      • Acoustics.Shared.Extensions
        • CartesianExtension
        • RandomExtensions
      • Acoustics.Shared.ImageSharp
        • DeltaImageProcessor<TPixelBg, TPixelFg>
        • DeltaImageProcessor<TPixelFg>
        • DeltaPixelBlender<TPixel>
        • Drawing
        • Drawing.NoAA
        • IInterval2<TX, TY>
        • RotateFlipType
      • Acoustics.Shared.Logging
        • Log4NetTextWriter
        • Log4NetTextWriter.Mode
        • Logging
      • Acoustics.Tools
        • AudioFilePreparer
        • AudioReadingRequest
        • AudioUtilityInfo
        • AudioUtilityModifiedInfo
        • AudioUtilityRequest
        • BandPassType
        • SpectrogramRequest
      • Acoustics.Tools.Audio
        • AbstractAudioUtility
        • AbstractSpectrogramUtility
        • AbstractUtility
        • AudioFormatNotSupportedException
        • AudioUtilityException
        • BitDepthOperationNotImplemented
        • ChannelNotAvailableException
        • ChannelSelectionOperationNotImplemented
        • CustomSpectrogramUtility
        • FfmpegAudioUtility
        • FfmpegRawPcmAudioUtility
        • IAudioUtility
        • ISpectrogramUtility
        • MasterAudioUtility
        • Mp3SpltAudioUtility
        • Mp3SpltAudioUtility.SplitFileInfo
        • ShntoolAudioUtility
        • SoxAudioUtility
        • SoxAudioUtility.SoxResampleQuality
        • SoxSpectrogramUtility
        • WavPackAudioUtility
      • Acoustics.Tools.Wav
        • IWavReader
        • WavAudioInfo
        • WavChunk
        • WavReader
        • WavReader.WaveFormat
        • WavStreamReader
        • WavUtils
      • AcousticWorkbench
        • AcousticEventService
        • AcousticWorkbenchResponse<T>
        • Api
        • AudioRecordingService
        • AuthenticatedApi
        • AuthenticationService
        • AuthenticationService.EmailLoginRequest
        • AuthenticationService.LoginRequest
        • AuthenticationService.LoginResponse
        • Error
        • IApi
        • IAuthenticatedApi
        • MediaService
        • Meta
        • Service
        • Service.HttpResponseException
        • UrlGenerator
      • AcousticWorkbench.Models
        • AudioEvent
        • AudioRecording
        • Available
        • CommonParameters
        • FormatInfo
        • ImageFormatInfo
        • Media
        • Recording
        • Tagging
      • AForge.Imaging.Filters
        • BaseUsingCopyPartialFilter
        • CannyEdgeDetector
      • AnalysisBase
        • AbstractStrongAnalyser
        • AnalysisCoordinator
        • AnalysisResult
        • AnalysisResult2
        • AnalysisSettings
        • AnalyzerConfig
        • AudioRecordingTooShortException
        • Author
        • Bibliography
        • Citation
        • FileSegment
        • FileSegment.FileDateBehavior
        • IAnalyser2
        • ICiteable
        • IHasStatus
        • ISourcePreparer
        • SaveBehavior
        • SaveBehaviorExtensions
        • SegmentSettings<TSegment>
        • SegmentSettingsBase
        • SegmentSplitException
        • Status
        • TimeAlignment
      • AnalysisBase.Extensions
        • ModifiedInfoExtensions
      • AnalysisBase.ResultBases
        • EventBase
        • EventIndex
        • ITemporalEvent
        • ResultBase
        • SpectralIndexBase
        • SummaryIndexBase
      • AnalysisBase.Segment
        • InvalidSegmentException
        • ISegment<TSource>
        • SourceMetadata
      • AnalysisPrograms
        • AcousticIndices
        • AcousticIndices.AcousticIndicesConfig
        • Aed
        • Aed.AedConfiguration
        • Aed.Arguments
        • AnalysesAvailable
        • Audio2InputForConvCnn
        • Audio2InputForConvCnn.Arguments
        • Audio2InputForConvCnn.AudioToSonogramResult
        • Audio2InputForConvCnn.CsvDataRecord
        • Audio2InputForConvCnn.SpeciesCounts
        • AudioCutter
        • AudioCutter.Arguments
        • AudioFileCheck
        • AudioFileCheck.Arguments
        • BuildMetadata
        • ChannelIntegrityAnalyzer
        • CheckEnvironment
        • CheckEnvironment.Arguments
        • ConcatenateIndexFiles
        • ConcatenateIndexFiles.Arguments
        • Create4Sonograms
        • Create4Sonograms.Arguments
        • Crow
        • DifferenceSpectrogram
        • DifferenceSpectrogram.Arguments
        • DrawEasyImage
        • DrawEasyImage.Arguments
        • DrawLongDurationSpectrograms
        • DrawLongDurationSpectrograms.Arguments
        • DrawSummaryIndexTracks
        • DrawSummaryIndexTracks.Arguments
        • DummyAnalysis
        • DummyAnalysis.Arguments
        • EPR
        • EPR.Arguments
        • FileRenamer
        • FileRenamer.Arguments
        • GroundParrotRecogniser
        • GroundParrotRecogniser.Arguments
        • Human1
        • KoalaMale
        • KoalaMale.KoalaMaleResults
        • LSKiwi3
        • LSKiwi3.Arguments
        • LSKiwiHelper
        • LSKiwiROC
        • LSKiwiROC.Arguments
        • MahnooshSandpit
        • MahnooshSandpit.Arguments
        • MainEntry
        • OscillationRecogniser
        • OscillationRecogniser.Arguments
        • OscillationsGeneric
        • OscillationsGeneric.Arguments
        • PlanesTrainsAndAutomobiles
        • PreprocessorForConvDnn
        • PreprocessorForSurfAnalysis
        • RheobatrachusSilus
        • Sandpit
        • Sandpit.Arguments
        • Segment
        • Segment.Arguments
        • SnrAnalysis
        • SnrAnalysis.Arguments
        • SpeciesAccumulationCurve
        • SpeciesAccumulationCurve.Arguments
        • SpeciesAccumulationStats
        • SPT
        • SPT.Arguments
        • SurfAnalysis
        • SurfAnalysis.Arguments
        • SurfAnalysis.AudioToSonogramResult
        • SurfAnalysis.CsvDataRecord
        • SurfAnalysis.SpeciesCounts
      • AnalysisPrograms.AcousticWorkbench.Orchestration
        • EventMetadataResolver
        • RemoteSegment
        • RemoteSegmentWithData
      • AnalysisPrograms.AnalyseLongRecordings
        • AnalyseLongRecording
        • AnalyseLongRecording.Arguments
      • AnalysisPrograms.ContentDescription
        • BuildModel
        • BuildModel.Arguments
        • UseModel
        • UseModel.CdConfig
      • AnalysisPrograms.Draw.RibbonPlots
        • RibbonPlot
        • RibbonPlot.Arguments
      • AnalysisPrograms.Draw.Zooming
        • DrawZoomingSpectrograms
        • DrawZoomingSpectrograms.Arguments
        • DrawZoomingSpectrograms.Arguments.ZoomActionType
      • AnalysisPrograms.EventStatistics
        • EventStatisticsAnalysis
        • EventStatisticsEntry
        • EventStatisticsEntry.Arguments
        • ImportedEvent
        • ImportedEvent.ImportedEventNameClassMap
      • AnalysisPrograms.Production
        • AnalysisOptionDevilException
        • CommandLineApplicationExtensions
        • CommandLineArgumentException
        • CustomHelpTextGenerator
        • ExceptionLookup
        • ExceptionLookup.ExceptionStyle
        • FileSystemProvider
        • FileSystemProvider.Options
        • InvalidAudioChannelException
        • InvalidDurationException
        • InvalidStartOrEndException
        • MissingDataException
        • NoDeveloperMethodException
        • PhysicalConsoleLogger
      • AnalysisPrograms.Production.Arguments
        • AnalyserArguments
        • DebugOptions
        • HelpArgs
        • ListArgs
        • LogVerbosity
        • MainArgs
        • SourceAndConfigArguments
        • SourceArguments
        • SourceConfigOutputDirArguments
        • SubCommandBase
      • AnalysisPrograms.Production.Parsers
        • DateTimeOffsetParser
        • DirectoryInfoParser
        • FileInfoParser
        • TimeSpanParser
      • AnalysisPrograms.Production.Validation
        • DirectoryExistsOrCreateAttribute
        • ExistingFileAttribute
        • InRangeAttribute
        • NotExistingFileAttribute
        • OneOfThese
      • AnalysisPrograms.Recognizers
        • GenericRecognizer
        • GenericRecognizer.GenericRecognizerConfig
        • NinoxStrenua
        • NinoxStrenua.NinoxStrenuaConfig
        • PetaurusAustralis
        • PetaurusAustralis.PetaurusAustralisConfig
        • PetaurusBreviceps
        • PetaurusBreviceps.PetaurusBrevicepsConfig
        • PetaurusNorfolcensis
        • PetaurusNorfolcensis.PetaurusNorfolcensisConfig
      • AnalysisPrograms.Recognizers.Base
        • BlobParameters
        • CommonParameters
        • DctParameters
        • ForwardTrackParameters
        • HarmonicParameters
        • IEventRecognizer
        • MinAndMaxBandwidthParameters
        • MultiRecognizer
        • MultiRecognizer.MultiRecognizerConfig
        • OnebinTrackParameters
        • OneframeTrackParameters
        • OscillationParameters
        • RecognizerBase
        • RecognizerBase.RecognizerConfig
        • RecognizerEntry
        • RecognizerEntry.Arguments
        • RecognizerResults
        • UpwardTrackParameters
      • AnalysisPrograms.Recognizers.Birds
        • ArdeaInsignis
        • AtrichornisRufescens
        • AtrichornisRufescens.AtrichornisRufescensConfig
        • CalyptorhynchusLathami
        • CalyptorhynchusLathami.CalyptorhynchusLathamiConfig
        • ClimacterisPicumnus
        • ClimacterisPicumnus.ClimacterisPicumnusConfig
        • LewiniaPectoralis
        • LewinsRailConfig
        • ManorinaMelanophrys
        • ManorinaMelanophrys.ManorinaMelanophrysConfig
        • NinoxConnivens
        • NinoxConnivens.NinoxConnivensConfig
        • TytoNovaehollandiae
        • TytoNovaehollandiae.TytoNovaehollandiaeConfig
        • TytoTenebricosa
        • TytoTenebricosa.TytoTenebricosaConfig
      • AnalysisPrograms.Recognizers.Frogs
        • LitoriaBicolor
        • LitoriaBicolorConfig
        • LitoriaCaerulea
        • LitoriaRothii
        • LitoriaRubella
      • AnalysisPrograms.SourcePreparers
        • LocalSourcePreparer
        • RemoteSourcePreparer
        • RemoteSourcePreparerException
      • AnalysisPrograms.SpectralPeakTracking
        • SpectralPeakTrackingConfig
        • SpectralPeakTrackingEntry
        • SpectralPeakTrackingEntry.Arguments
      • AnalysisPrograms.SpectrogramGenerator
        • Audio2Sonogram
        • Audio2Sonogram.Arguments
        • AudioToSonogramResult
        • SpectrogramGenerator
        • SpectrogramGeneratorConfig
        • SpectrogramImageType
      • AnalysisPrograms.StandardizedFeatures
        • StandardizedFeatureExtraction
        • StandardizedFeatureExtractionConfig
        • StandardizedFeatureExtractionConfig.BandsProperties
        • StandardizedFeatureExtractionConfig.Bandwidth
      • AudioAnalysisTools
        • AcousticComplexityIndex
        • AcousticEntropy
        • AcousticEvent
        • AcousticEvent.AcousticEventClassMap
        • ActivityAndCover
        • AnalysisKeys
        • BirdClefExperiment1
        • BirdClefExperiment1.Arguments
        • BirdClefExperiment1.Output
        • BlobEvent
        • ChannelIntegrity
        • ChannelIntegrity.Arguments
        • ChannelIntegrityIndices
        • ChirpEvent
        • ClickEvent
        • ClusterInfo
        • ConfigKeys
        • ConfigKeys.EndpointDetection
        • ConfigKeys.ImageSave
        • ConfigKeys.Mfcc
        • ConfigKeys.Recording
        • ConfigKeys.Sonogram
        • ConfigKeys.SonogramTypes
        • ConfigKeys.Windowing
        • CrossCorrelation
        • EndpointDetectionConfiguration
        • FindMatchingEvents
        • FrommoltProject
        • HarmonicAnalysis
        • HarmonicEvent
        • IPointData
        • ISignalToImage
        • ISpectralPoint
        • ITracks<T>
        • MfccConfiguration
        • OscillationEvent
        • Oscillations2010
        • Oscillations2012
        • Oscillations2014
        • Oscillations2014.FreqVsOscillationsResult
        • Oscillations2019
        • PointOfInterest
        • ResultsTools
        • RidgeDetection
        • RidgeDetection.RidgeDetectionConfiguration
        • SiteDescription
        • SpectralActivity
        • SpectralCentroid
        • SpectralClustering
        • SpectralClustering.ClusteringParameters
        • SpectralClustering.TrainingDataInfo
        • SpectralPeakTracking2018
        • SpectralPeakTracking2018.Output
        • SpectralPeakTrackingSettings
        • SpectralPeakTracks
        • SprTools
        • SummaryActivity
        • SunAndMoon
        • SunAndMoon.SunMoonTides
        • SURFFeatures
        • TemporalEvent
        • TowseySignalToImage
        • UnitConverters
        • WebSignalToImage
        • WhipEvent
        • WhistleEvent
      • AudioAnalysisTools.ContentDescriptionTools
        • ContentAlgorithms
        • ContentSignatures
        • ContentVisualization
        • DataProcessing
        • DescriptionResult
        • EditStatus
        • FunctionalTemplate
        • SourceAudioProvenance
        • TemplateCollection
        • TemplateManifest
      • AudioAnalysisTools.DSP
        • Clipping
        • DSP_Frames
        • DSP_Frames.EnvelopeAndFft
        • DSP_IIRFilter
        • DspFilters
        • FeatureExtraction
        • FeatureLearning
        • FeatureLearningSettings
        • FFT2D
        • FreqScaleType
        • FrequencyScale
        • KmeansClustering
        • KmeansClustering.Output
        • LocalContrastNormalisation
        • MFCCStuff
        • NoiseProfile
        • NoiseReductionType
        • NoiseRemoval_Briggs
        • NoiseRemovalModal
        • OctaveFreqScale
        • PatchSampling
        • PatchSampling.SamplingMethod
        • PcaWhitening
        • PcaWhitening.Output
        • PowerSpectralDensity
        • SNR
        • SNR.BackgroundNoise
        • SNR.SnrStatistics
        • WaveType
        • WavInfo
        • WavWriter
      • AudioAnalysisTools.Events
        • EventCommon
        • EventExtentions
        • EventFilters
        • InstantEvent
        • SpectralEvent
        • SpectralPoint
      • AudioAnalysisTools.Events.Drawing
        • EventDrawer
        • EventRenderingOptions
        • IDrawableEvent
      • AudioAnalysisTools.Events.Interfaces
        • IInstantEvent
        • ISpectralBand
        • ISpectralEvent
        • ITrack
      • AudioAnalysisTools.Events.Tracks
        • Track
        • TrackType
      • AudioAnalysisTools.Events.Types
        • ChatterEvent
        • CompositeEvent
        • EventConverters
        • EventPostProcessing
        • EventPostProcessing.BandwidthConfig
        • EventPostProcessing.DurationConfig
        • EventPostProcessing.PostProcessingConfig
        • EventPostProcessing.SidebandConfig
        • EventPostProcessing.SyllableSequenceConfig
        • EventPostProcessing.SyllableStackConfig
      • AudioAnalysisTools.EventStatistics
        • EventStatistics
        • EventStatistics.EventStatisticsClassMap
        • EventStatisticsCalculate
        • EventStatisticsConfiguration
      • AudioAnalysisTools.Indices
        • AnalyzerConfigIndexProperties
        • ConcatMode
        • GapsAndJoins
        • IIndexPropertyReferenceConfiguration
        • IndexCalculate
        • IndexCalculateConfig
        • IndexCalculateResult
        • IndexCalculateSixOnly
        • IndexDisplay
        • IndexDistributions
        • IndexDistributions.SpectralStats
        • IndexGenerationData
        • IndexMatrices
        • IndexProperties
        • IndexPropertiesCollection
        • InitialiseIndexProperties
        • RainIndices
        • RainIndices.RainStruct
        • SpectralIndexValues
        • SpectralIndexValuesForContentDescription
        • SpectralIndicesToAndFromTable
        • SpectralIndicesToAndFromTable.Arguments
        • SummaryIndexValues
      • AudioAnalysisTools.LongDurationSpectrograms
        • LdSpectrogram3D
        • LdSpectrogram3D.Arguments
        • LDSpectrogramClusters
        • LdSpectrogramConfig
        • LdSpectrogramDifference
        • LDSpectrogramDiscreteColour
        • LDSpectrogramDistance
        • LDSpectrogramRGB
        • LdSpectrogramRibbons
        • LdSpectrogramStitching
        • LdSpectrogramTStatistic
        • SpectrogramConstants
        • SpectrogramType
        • TimeOffsetSingleLayerSuperTile
        • ZoomFocusedSpectrograms
      • AudioAnalysisTools.LongDurationSpectrograms.Zooming
        • InvalidScaleException
        • SpectrogramZoomingConfig
        • ZoomCommon
        • ZoomParameters
        • ZoomTiledSpectrograms
      • AudioAnalysisTools.Scales
        • LinearScale
      • AudioAnalysisTools.StandardSpectrograms
        • AmplitudeSonogram
        • AmplitudeSpectrogram
        • BaseSonogram
        • DecibelSpectrogram
        • EnergySpectrogram
        • Image_MultiTrack
        • ImageTrack
        • SonogramConfig
        • SpectrogramAttributes
        • SpectrogramCepstral
        • SpectrogramMelScale
        • SpectrogramOctaveScale
        • SpectrogramSettings
        • SpectrogramSobelEdge
        • SpectrogramStandard
        • SpectrogramTools
        • TrackType
      • AudioAnalysisTools.TileImage
        • AbsoluteDateTilingProfile
        • DefaultSuperTile
        • DuplicateTileException
        • ImageComponent
        • ISuperTile
        • Layer
        • PanoJsTilingProfile
        • TileBias
        • Tiler
        • TilingProfile
      • AudioAnalysisTools.Tracks
        • ForwardTrackAlgorithm
        • OnebinTrackAlgorithm
        • OneframeTrackAlgorithm
        • UpwardTrackAlgorithm
      • AudioAnalysisTools.WavTools
        • AudioRecording
        • RecordingFetcher
        • TowseyWavReader
        • WavChooser
      • Be.Timvw.Framework.Collections.Generic
        • PropertyComparer<T>
      • BTR.Core.Linq
        • ExpressionExtensions
        • ExpressionVisitor
        • ExpressionVisitor<T>
      • log4net
        • LogExtensions
      • NeuralNets
        • ART
        • ART_2A
        • BinaryCluster
        • Cluster
        • FuzzyART
        • VQ
      • QutSensors.Shared
        • StatDescriptive
        • StatDescriptiveResult
      • SixLabors.ImageSharp
        • ImageSharpExtensions
      • System
        • ArrayExtensions
        • DateTimeAndTimeSpanExtensions
        • DateTimeAndTimeSpanExtensions.RoundingDirection
        • DoubleExtensions
        • DoubleSquareArrayExtensions
        • DoubleSquareArrayExtensions.MergingDirection
        • EnumerableExtensions
        • EnumExtensions
        • ExceptionsExtensions
        • ExtensionsString
        • FileInfoExtensions
        • FileInfoNameComparer
        • LoggedConsole
        • MathExtensions
        • NoConsole
        • ObjectExtensions
        • ProcessExtensions
        • ProcessExtensions.ParentProcessUtilities
        • ReflectionExtensions
        • SystemExtensions
        • TupleExtensions
      • System.Collections.Generic
        • DictionaryExtensions
      • System.Drawing
        • RectangleExtensions
      • System.IO
        • ExtensionsIO
      • System.Threading.Tasks
        • TaskExtensions
      • System.Xml.Linq
        • ExtensionsXml
      • TowseyLibrary
        • AutoAndCrossCorrelation
        • ColorCubeHelix
        • ColorCubeHelix.HslColor
        • ConfigDict
        • ConfigDictionary
        • ConfigurationExtensions
        • CsvTools
        • CubeHelix
        • DataTableTools
        • DataTools
        • DictionaryTools
        • Distribution
        • FFT
        • FFT.WindowFunc
        • FileTools
        • FunctionalTests
        • GaussianTools
        • GraphsAndCharts
        • Gratings
        • Histogram
        • ImageTools
        • Kernal
        • LLR
        • Log
        • Matrix3D
        • MatrixTools
        • NormalDist
        • Oblong
        • Oblong.OblongClassMap
        • OtsuThresholder
        • OtsuThresholder.Arguments
        • Plot
        • PolarCoordinates
        • PulseTrain
        • RandomNumber
        • RandomVariable
        • Spectrum
        • Statistics
        • StructureTensor
        • StructureTensor.RidgeTensorResult
        • StructureTensor.StructureTensorResult
        • SvdAndPca
        • TemporalMatrix
        • TernaryPlots
        • TestTools
        • TextUtilities
        • WaveletPacketDecomposition
        • WaveletPacketDecomposition.BinVector
        • WaveletTransformContinuous
        • WindowFunctions

    Class ImageTools

    Inheritance
    Object
    ImageTools
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: TowseyLibrary
    Assembly: TowseyLibrary.dll
    Syntax
    public class ImageTools

    Fields

    | Improve this Doc View Source

    Colors

    Declaration
    public static readonly Color[] Colors
    Field Value
    Type Description
    SixLabors.ImageSharp.Color[]
    | Improve this Doc View Source

    DarkColors

    Declaration
    public static Color[] DarkColors
    Field Value
    Type Description
    SixLabors.ImageSharp.Color[]
    | Improve this Doc View Source

    SobelX

    Declaration
    public static double[, ] SobelX
    Field Value
    Type Description
    Double[,]
    | Improve this Doc View Source

    SobelY

    Declaration
    public static double[, ] SobelY
    Field Value
    Type Description
    Double[,]

    Methods

    | Improve this Doc View Source

    ApplyInvert(Image<Rgb24>)

    Declaration
    public static Image ApplyInvert(Image<Rgb24> ImageImage)
    Parameters
    Type Name Description
    SixLabors.ImageSharp.Image<SixLabors.ImageSharp.PixelFormats.Rgb24> ImageImage
    Returns
    Type Description
    SixLabors.ImageSharp.Image
    | Improve this Doc View Source

    Blur(Double[,], Int32)

    blurs an image using a square neighbourhood.

    Declaration
    public static double[, ] Blur(double[, ] matrix, int nh)
    Parameters
    Type Name Description
    Double[,] matrix

    the image ot be blurred.

    Int32 nh

    Note that neighbourhood is distance either side of central pixel.

    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    Blur(Double[,], Int32, Int32)

    blurs and image using a rectangular neighbourhood. Note that in this method neighbourhood dimensions are full side or window.

    Declaration
    public static double[, ] Blur(double[, ] matrix, int cWindow, int rWindow)
    Parameters
    Type Name Description
    Double[,] matrix

    image to be blurred.

    Int32 cWindow

    column Window i.e. x-dimension.

    Int32 rWindow

    row Window i.e. y-dimension.

    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    ByteMatrix2DoublesMatrix(Byte[,])

    Declaration
    public static double[, ] ByteMatrix2DoublesMatrix(byte[, ] mb)
    Parameters
    Type Name Description
    Byte[,] mb
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    CannyEdgeDetection(Image<Rgb24>, Byte, Byte)

    The below method is derived from the following site http://premsivakumar.wordpress.com/2010/12/13/edge-detection-using-c-and-aforge-net/ The author references the following Afroge source code http://www.aforgenet.com/framework/features/edge_detectors_filters.html See the below link for how to set the thresholds etc http://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm.

    Declaration
    public static Image CannyEdgeDetection(Image<Rgb24> bmp, byte lowThreshold, byte highThreshold)
    Parameters
    Type Name Description
    SixLabors.ImageSharp.Image<SixLabors.ImageSharp.PixelFormats.Rgb24> bmp
    Byte lowThreshold
    Byte highThreshold
    Returns
    Type Description
    SixLabors.ImageSharp.Image
    | Improve this Doc View Source

    CombineImagesInLine<T>(Color, Image<T>[])

    Declaration
    public static Image<T> CombineImagesInLine<T>(Color fill, params Image<T>[] images)
        where T : struct, IPixel<T>
    Parameters
    Type Name Description
    SixLabors.ImageSharp.Color fill
    SixLabors.ImageSharp.Image<T>[] images
    Returns
    Type Description
    SixLabors.ImageSharp.Image<T>
    Type Parameters
    Name Description
    T
    | Improve this Doc View Source

    CombineImagesInLine<T>(Image<T>[])

    Stacks the passed images one on top of the other. Assumes that all images have the same width.

    Declaration
    public static Image<T> CombineImagesInLine<T>(params Image<T>[] images)
        where T : struct, IPixel<T>
    Parameters
    Type Name Description
    SixLabors.ImageSharp.Image<T>[] images

    An array of images.

    Returns
    Type Description
    SixLabors.ImageSharp.Image<T>

    A single image.

    Type Parameters
    Name Description
    T
    | Improve this Doc View Source

    CombineImagesInLine<T>(List<Image<T>>)

    Stacks the passed images one on top of the other.

    Declaration
    public static Image<T> CombineImagesInLine<T>(List<Image<T>> list)
        where T : struct, IPixel<T>
    Parameters
    Type Name Description
    List<SixLabors.ImageSharp.Image<T>> list

    A list of images.

    Returns
    Type Description
    SixLabors.ImageSharp.Image<T>

    A single image.

    Type Parameters
    Name Description
    T
    | Improve this Doc View Source

    CombineImagesVertically<T>(Image<T>[])

    Declaration
    public static Image<T> CombineImagesVertically<T>(params Image<T>[] images)
        where T : struct, IPixel<T>
    Parameters
    Type Name Description
    SixLabors.ImageSharp.Image<T>[] images
    Returns
    Type Description
    SixLabors.ImageSharp.Image<T>
    Type Parameters
    Name Description
    T
    | Improve this Doc View Source

    CombineImagesVertically<T>(List<Image<T>>)

    Stacks the passed images one on top of the other. Adjust image to widest of them.

    Declaration
    public static Image<T> CombineImagesVertically<T>(List<Image<T>> list)
        where T : struct, IPixel<T>
    Parameters
    Type Name Description
    List<SixLabors.ImageSharp.Image<T>> list
    Returns
    Type Description
    SixLabors.ImageSharp.Image<T>
    Type Parameters
    Name Description
    T
    | Improve this Doc View Source

    CombineImagesVertically<T>(List<Image<T>>, Int32)

    Declaration
    public static Image<T> CombineImagesVertically<T>(List<Image<T>> list, int maxWidth)
        where T : struct, IPixel<T>
    Parameters
    Type Name Description
    List<SixLabors.ImageSharp.Image<T>> list
    Int32 maxWidth
    Returns
    Type Description
    SixLabors.ImageSharp.Image<T>
    Type Parameters
    Name Description
    T
    | Improve this Doc View Source

    CombineImagesVertically<T>(Nullable<Int32>, Image<T>[])

    Stacks the passed images one on top of the other.

    Declaration
    public static Image<T> CombineImagesVertically<T>(int? maximumWidth, Image<T>[] array)
        where T : struct, IPixel<T>
    Parameters
    Type Name Description
    Nullable<Int32> maximumWidth

    The maximum width of the output images.

    SixLabors.ImageSharp.Image<T>[] array

    An array of Image.

    Returns
    Type Description
    SixLabors.ImageSharp.Image<T>

    A single image.

    Type Parameters
    Name Description
    T
    | Improve this Doc View Source

    ContrastStretching(Double[,], Double)

    this method assumes that all the values in the passed matrix are between zero & one. Will truncate all values > 1 to 1.0. Spurious results will occur if have negative values or values > 1. Should NormaliseMatrixValues matrix first if these conditions do not apply.

    Declaration
    public static double[, ] ContrastStretching(double[, ] M, double fractionalStretching)
    Parameters
    Type Name Description
    Double[,] M
    Double fractionalStretching
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    Convolve(Double[,], Kernal)

    Declaration
    public static double[, ] Convolve(double[, ] matrix, Kernal name)
    Parameters
    Type Name Description
    Double[,] matrix
    Kernal name
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    DetectHighEnergyRegions1(Double[,])

    Detect high intensity / high energy regions in an image using blurring followed by rules involving positive and negative gradients.

    Declaration
    public static double[, ] DetectHighEnergyRegions1(double[, ] matrix)
    Parameters
    Type Name Description
    Double[,] matrix
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    DetectHighEnergyRegions3(Double[,])

    Detect high intensity / high energy regions in an image using blurring followed by bandwise thresholding.

    Declaration
    public static double[, ] DetectHighEnergyRegions3(double[, ] matrix)
    Parameters
    Type Name Description
    Double[,] matrix
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    DetectLine(Double[,], Int32, Int32, Int32, Double, Int32)

    Declaration
    public static Tuple<int, double> DetectLine(double[, ] m, int row, int col, int lineLength, double centreThreshold, int resolutionAngle)
    Parameters
    Type Name Description
    Double[,] m
    Int32 row
    Int32 col
    Int32 lineLength
    Double centreThreshold
    Int32 resolutionAngle
    Returns
    Type Description
    Tuple<Int32, Double>
    | Improve this Doc View Source

    DrawColourChart(Int32, Int32, Color[])

    Returns an image of an array of the passed colour patches.

    Declaration
    public static Image DrawColourChart(int width, int ht, Color[] colorArray)
    Parameters
    Type Name Description
    Int32 width
    Int32 ht
    SixLabors.ImageSharp.Color[] colorArray
    Returns
    Type Description
    SixLabors.ImageSharp.Image
    | Improve this Doc View Source

    DrawMatrix(Byte[,], String)

    Declaration
    public static void DrawMatrix(byte[, ] mBytes, string pathName)
    Parameters
    Type Name Description
    Byte[,] mBytes
    String pathName
    | Improve this Doc View Source

    DrawMatrix(Double[], String)

    Draws matrix and save image.

    Declaration
    public static void DrawMatrix(double[] vector, string pathName)
    Parameters
    Type Name Description
    Double[] vector

    the data.

    String pathName
    | Improve this Doc View Source

    DrawMatrix(Double[,], Boolean)

    Draws matrix but automatically determines the scale to fit 1000x1000 pixel image.

    Declaration
    public static Image<Rgb24> DrawMatrix(double[, ] matrix, bool doScale)
    Parameters
    Type Name Description
    Double[,] matrix

    the data.

    Boolean doScale
    Returns
    Type Description
    SixLabors.ImageSharp.Image<SixLabors.ImageSharp.PixelFormats.Rgb24>
    | Improve this Doc View Source

    DrawMatrix(Double[,], Double, Double, String)

    Declaration
    public static void DrawMatrix(double[, ] matrix, double lowerBound, double upperBound, string pathName)
    Parameters
    Type Name Description
    Double[,] matrix
    Double lowerBound
    Double upperBound
    String pathName
    | Improve this Doc View Source

    DrawMatrix(Double[,], Int32, Int32, String)

    Declaration
    public static void DrawMatrix(double[, ] matrix, int cellXpixels, int cellYpixels, string pathName)
    Parameters
    Type Name Description
    Double[,] matrix
    Int32 cellXpixels
    Int32 cellYpixels
    String pathName
    | Improve this Doc View Source

    DrawMatrix(Double[,], String)

    Draws matrix and save image.

    Declaration
    public static void DrawMatrix(double[, ] matrix, string pathName)
    Parameters
    Type Name Description
    Double[,] matrix

    the data.

    String pathName
    | Improve this Doc View Source

    DrawMatrixInColour(Double[,], Boolean)

    Draws colour matrix but automatically determines the scale to fit 1000x1000 pixel image.

    Declaration
    public static Image DrawMatrixInColour(double[, ] matrix, bool doScale)
    Parameters
    Type Name Description
    Double[,] matrix

    the data.

    Boolean doScale
    Returns
    Type Description
    SixLabors.ImageSharp.Image
    | Improve this Doc View Source

    DrawMatrixInColour(Double[,], Int32, Int32)

    Declaration
    public static Image DrawMatrixInColour(double[, ] matrix, int xPixelsPerCell, int yPixelsPerCell)
    Parameters
    Type Name Description
    Double[,] matrix
    Int32 xPixelsPerCell
    Int32 yPixelsPerCell
    Returns
    Type Description
    SixLabors.ImageSharp.Image
    | Improve this Doc View Source

    DrawMatrixInColour(Double[,], String, Boolean)

    Declaration
    public static void DrawMatrixInColour(double[, ] matrix, string pathName, bool doScale)
    Parameters
    Type Name Description
    Double[,] matrix
    String pathName
    Boolean doScale
    | Improve this Doc View Source

    DrawMatrixInGrayScale(Double[,], Int32, Int32, Boolean)

    Draws matrix according to user defined scale.

    Declaration
    public static Image<Rgb24> DrawMatrixInGrayScale(double[, ] matrix, int xPixelsPerCell, int yPixelsPerCell, bool reverse)
    Parameters
    Type Name Description
    Double[,] matrix

    the data.

    Int32 xPixelsPerCell

    X axis scale - pixels per cell.

    Int32 yPixelsPerCell

    Y axis scale - pixels per cell.

    Boolean reverse

    determines black on white or white on black.

    Returns
    Type Description
    SixLabors.ImageSharp.Image<SixLabors.ImageSharp.PixelFormats.Rgb24>
    | Improve this Doc View Source

    DrawMatrixWithoutNormalisation(Double[,])

    Draws matrix without normkalising the values in the matrix. Assume some form of normalisation already done.

    Declaration
    public static Image<Rgb24> DrawMatrixWithoutNormalisation(double[, ] matrix)
    Parameters
    Type Name Description
    Double[,] matrix

    the data.

    Returns
    Type Description
    SixLabors.ImageSharp.Image<SixLabors.ImageSharp.PixelFormats.Rgb24>
    | Improve this Doc View Source

    DrawMatrixWithoutNormalisationGreenScale(Double[,])

    Declaration
    public static Image<Rgb24> DrawMatrixWithoutNormalisationGreenScale(double[, ] matrix)
    Parameters
    Type Name Description
    Double[,] matrix
    Returns
    Type Description
    SixLabors.ImageSharp.Image<SixLabors.ImageSharp.PixelFormats.Rgb24>
    | Improve this Doc View Source

    DrawNormalisedMatrix(Double[,])

    Draws matrix after first normalising the data.

    Declaration
    public static Image<Rgb24> DrawNormalisedMatrix(double[, ] matrix)
    Parameters
    Type Name Description
    Double[,] matrix

    the data.

    Returns
    Type Description
    SixLabors.ImageSharp.Image<SixLabors.ImageSharp.PixelFormats.Rgb24>
    | Improve this Doc View Source

    DrawNormalisedMatrix(Double[,], Double, Double)

    Declaration
    public static Image<Rgb24> DrawNormalisedMatrix(double[, ] matrix, double lowerBound, double upperBound)
    Parameters
    Type Name Description
    Double[,] matrix
    Double lowerBound
    Double upperBound
    Returns
    Type Description
    SixLabors.ImageSharp.Image<SixLabors.ImageSharp.PixelFormats.Rgb24>
    | Improve this Doc View Source

    DrawReversedMatrix(Double[,])

    Draws matrix after first normalising the data.

    Declaration
    public static Image<Rgb24> DrawReversedMatrix(double[, ] matrix)
    Parameters
    Type Name Description
    Double[,] matrix

    the data.

    Returns
    Type Description
    SixLabors.ImageSharp.Image<SixLabors.ImageSharp.PixelFormats.Rgb24>
    | Improve this Doc View Source

    DrawReversedMatrix(Double[,], String)

    Normalises the matrix between zero and one. Then draws the reversed matrix and saves image to passed path.

    Declaration
    public static void DrawReversedMatrix(double[, ] matrix, string pathName)
    Parameters
    Type Name Description
    Double[,] matrix

    the data.

    String pathName
    | Improve this Doc View Source

    DrawReversedMatrixWithoutNormalisation(Double[,])

    Draws matrix without normkalising the values in the matrix. Assume some form of normalisation already done.

    Declaration
    public static Image<Rgb24> DrawReversedMatrixWithoutNormalisation(double[, ] matrix)
    Parameters
    Type Name Description
    Double[,] matrix

    the data.

    Returns
    Type Description
    SixLabors.ImageSharp.Image<SixLabors.ImageSharp.PixelFormats.Rgb24>
    | Improve this Doc View Source

    DrawReversedMDNMatrix(Matrix<Double>, String)

    Normalises the matrix between zero and one. Then draws the reversed matrix and saves image to passed path.

    Declaration
    public static void DrawReversedMDNMatrix(Matrix<double> matrix, string pathName)
    Parameters
    Type Name Description
    MathNet.Numerics.LinearAlgebra.Matrix<Double> matrix

    the data.

    String pathName
    | Improve this Doc View Source

    DrawRGBMatrix(Double[,], Double[,], Double[,])

    Declaration
    public static Image<Rgb24> DrawRGBMatrix(double[, ] matrixR, double[, ] matrixG, double[, ] matrixB)
    Parameters
    Type Name Description
    Double[,] matrixR
    Double[,] matrixG
    Double[,] matrixB
    Returns
    Type Description
    SixLabors.ImageSharp.Image<SixLabors.ImageSharp.PixelFormats.Rgb24>
    | Improve this Doc View Source

    DrawVectorInColour(Double[], Int32)

    Declaration
    public static Image DrawVectorInColour(double[] vector, int cellWidth)
    Parameters
    Type Name Description
    Double[] vector
    Int32 cellWidth
    Returns
    Type Description
    SixLabors.ImageSharp.Image
    | Improve this Doc View Source

    DrawVectorInGrayScale(Double[], Int32, Int32)

    Declaration
    public static Image DrawVectorInGrayScale(double[] vector, int cellWidth, int cellHeight)
    Parameters
    Type Name Description
    Double[] vector
    Int32 cellWidth
    Int32 cellHeight
    Returns
    Type Description
    SixLabors.ImageSharp.Image
    | Improve this Doc View Source

    DrawVectorInGrayScaleWithoutNormalisation(Double[], Int32, Int32, Boolean)

    This method assumes that the vector has already been normalised by some means such that all values lie between 0.0 and 1.0.

    Declaration
    public static Image<Rgb24> DrawVectorInGrayScaleWithoutNormalisation(double[] vector, int cellWidth, int cellHeight, bool reverse)
    Parameters
    Type Name Description
    Double[] vector

    the vector of normalised values.

    Int32 cellWidth

    the width of the image.

    Int32 cellHeight

    the height of each image row.

    Boolean reverse
    Returns
    Type Description
    SixLabors.ImageSharp.Image<SixLabors.ImageSharp.PixelFormats.Rgb24>
    | Improve this Doc View Source

    DrawXaxisScale(Image<Rgb24>, Int32, Double, Double, Int32, Int32)

    assumes the y-axis has already been drawn already. Therefore require an offset at bottom left to accommodate the width of the y-axis.

    Declaration
    public static Image<Rgb24> DrawXaxisScale(Image<Rgb24> image, int scaleHeight, double xInterval, double xTicInterval, int yScalePadding, int xOffset)
    Parameters
    Type Name Description
    SixLabors.ImageSharp.Image<SixLabors.ImageSharp.PixelFormats.Rgb24> image
    Int32 scaleHeight
    Double xInterval
    Double xTicInterval
    Int32 yScalePadding
    Int32 xOffset
    Returns
    Type Description
    SixLabors.ImageSharp.Image<SixLabors.ImageSharp.PixelFormats.Rgb24>
    | Improve this Doc View Source

    DrawYaxisScale(Image<Rgb24>, Int32, Double, Double, Int32)

    Draws horizontal gridlines on Image.

    Declaration
    public static Image<Rgb24> DrawYaxisScale(Image<Rgb24> image, int scaleWidth, double yInterval, double yTicInterval, int yOffset)
    Parameters
    Type Name Description
    SixLabors.ImageSharp.Image<SixLabors.ImageSharp.PixelFormats.Rgb24> image
    Int32 scaleWidth
    Double yInterval
    Double yTicInterval
    Int32 yOffset
    Returns
    Type Description
    SixLabors.ImageSharp.Image<SixLabors.ImageSharp.PixelFormats.Rgb24>
    | Improve this Doc View Source

    FillGaps(Double[,])

    Declaration
    public static double[, ] FillGaps(double[, ] m)
    Parameters
    Type Name Description
    Double[,] m
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    GaussianBlur_5cell(Double[,])

    Returns matrix after convolving with Gaussian blur. The blurring is in 2D, first blurred in x-direction, then in y-direction. Blurring function is {0.006,0.061, 0.242,0.383,0.242,0.061,0.006}.

    Declaration
    public static double[, ] GaussianBlur_5cell(double[, ] matrix)
    Parameters
    Type Name Description
    Double[,] matrix
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    GetColorHistogramNormalized(Image<Rgb24>, Nullable<Rectangle>)

    Declaration
    public static Dictionary<Color, double> GetColorHistogramNormalized(Image<Rgb24> image, Rectangle? region = default(Rectangle? ))
    Parameters
    Type Name Description
    SixLabors.ImageSharp.Image<SixLabors.ImageSharp.PixelFormats.Rgb24> image
    Nullable<SixLabors.ImageSharp.Rectangle> region
    Returns
    Type Description
    Dictionary<SixLabors.ImageSharp.Color, Double>
    | Improve this Doc View Source

    GetColorPalette(Int32)

    returns a palette of a variety of coluor. Used for displaying clusters identified by colour.

    Declaration
    public static List<Pen> GetColorPalette(int paletteSize)
    Parameters
    Type Name Description
    Int32 paletteSize
    Returns
    Type Description
    List<SixLabors.ImageSharp.Drawing.Processing.Pen>
    | Improve this Doc View Source

    GetMatrixImage(Double[,])

    Returns an image of the data matrix. Normalises the values from min->max to 0->1. Thus the grey-scale image pixels will range from 0 to 255. This method was originally written to draw sonograms, hence the avoidance of outliers and references to freq bins. Perhaps this method should be put back in BaseSonogram.cs.

    Declaration
    public static Image<Rgb24> GetMatrixImage(double[, ] data)
    Parameters
    Type Name Description
    Double[,] data
    Returns
    Type Description
    SixLabors.ImageSharp.Image<SixLabors.ImageSharp.PixelFormats.Rgb24>
    | Improve this Doc View Source

    GetNoise(Double[,], Int32, Int32)

    Returns a small matrix of pixels chosen randomly from the passed matrix, m. The row and column is chosen randomly and then the reuired number of consecutive pixels is transferred. These noise matrices are used to obtain statistics for cross-correlation coefficients.

    Declaration
    public static double[, ] GetNoise(double[, ] m, int kRows, int kCols)
    Parameters
    Type Name Description
    Double[,] m
    Int32 kRows
    Int32 kCols
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    GetRedGradientPalette()

    returns a palette of a variety of coluor. Used for displaying clusters identified by colour.

    Declaration
    public static List<Pen> GetRedGradientPalette()
    Returns
    Type Description
    List<SixLabors.ImageSharp.Drawing.Processing.Pen>
    | Improve this Doc View Source

    GrayScale()

    returns a colour array of 256 gray scale values.

    Declaration
    public static Color[] GrayScale()
    Returns
    Type Description
    SixLabors.ImageSharp.Color[]
    | Improve this Doc View Source

    GreenScale()

    returns a colour array of 256 green scale values.

    Declaration
    public static Color[] GreenScale()
    Returns
    Type Description
    SixLabors.ImageSharp.Color[]
    | Improve this Doc View Source

    GreyScaleImage2Matrix(Image<Rgb24>)

    reads the intensity of a grey scale image into a matrix of double. Assumes gray scale is 0-255 and that color.R = color.G = color.B.

    Declaration
    public static double[, ] GreyScaleImage2Matrix(Image<Rgb24> Image)
    Parameters
    Type Name Description
    SixLabors.ImageSharp.Image<SixLabors.ImageSharp.PixelFormats.Rgb24> Image
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    GridFilter(Double[,], Kernal)

    Declaration
    public static double[, ] GridFilter(double[, ] m, Kernal name)
    Parameters
    Type Name Description
    Double[,] m
    Kernal name
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    MexicanHat5X5RidgeDetection(Double[,], out Boolean, out Double, out Int32)

    This modifies Sobel's ridge detection by using mexican hat filter. The mexican hat is the difference of two gaussians on different scales. DoG is used in image processing to find ridges. MATRIX must be square with odd number dimensions.

    Declaration
    public static void MexicanHat5X5RidgeDetection(double[, ] m, out bool isRidge, out double magnitude, out int direction)
    Parameters
    Type Name Description
    Double[,] m
    Boolean isRidge
    Double magnitude
    Int32 direction
    | Improve this Doc View Source

    PercentileThresholds(Double[,], Double, Double, out Double, out Double)

    returns the upper and lower thresholds for the pass upper and lower percentile cuts of matrix M Used for some of the noise reduciton algorithms.

    Declaration
    public static void PercentileThresholds(double[, ] M, double lowerCut, double upperCut, out double lowerThreshold, out double upperThreshold)
    Parameters
    Type Name Description
    Double[,] M
    Double lowerCut
    Double upperCut
    Double lowerThreshold
    Double upperThreshold
    | Improve this Doc View Source

    ReadImage2Image(String)

    Declaration
    public static Image<Rgb24> ReadImage2Image(string fileName)
    Parameters
    Type Name Description
    String fileName
    Returns
    Type Description
    SixLabors.ImageSharp.Image<SixLabors.ImageSharp.PixelFormats.Rgb24>
    | Improve this Doc View Source

    Reverse256GreyScale(Double[,])

    Reverses a 256 grey scale image.

    Declaration
    public static double[, ] Reverse256GreyScale(double[, ] m)
    Parameters
    Type Name Description
    Double[,] m
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    Shapes_lines(Double[,])

    Returns a binary matrix containing high energy lines in the oriignal spectrogram.

    Declaration
    public static double[, ] Shapes_lines(double[, ] matrix)
    Parameters
    Type Name Description
    Double[,] matrix
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    Shapes_lines_bandwise(Double[,])

    Returns a binary matrix containing high energy lines in the original spectrogram calculates the threshold bandwise.

    Declaration
    public static double[, ] Shapes_lines_bandwise(double[, ] matrix)
    Parameters
    Type Name Description
    Double[,] matrix
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    Shapes_RemoveSmall(Double[,], Int32, Int32)

    Declaration
    public static double[, ] Shapes_RemoveSmall(double[, ] m, int minRowWidth, int minColWidth)
    Parameters
    Type Name Description
    Double[,] m
    Int32 minRowWidth
    Int32 minColWidth
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    Shapes_RemoveSmallUnattached(Double[,], Int32, Int32)

    Declaration
    public static double[, ] Shapes_RemoveSmallUnattached(double[, ] m, int minRowWidth, int minColWidth)
    Parameters
    Type Name Description
    Double[,] m
    Int32 minRowWidth
    Int32 minColWidth
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    Shapes3(Double[,])

    Declaration
    public static double[, ] Shapes3(double[, ] m)
    Parameters
    Type Name Description
    Double[,] m
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    Shapes4(Double[,])

    Declaration
    public static ArrayList Shapes4(double[, ] m)
    Parameters
    Type Name Description
    Double[,] m
    Returns
    Type Description
    ArrayList
    | Improve this Doc View Source

    Shapes5(Double[,])

    Returns an ArrayList of rectabgular shapes that represent acoustic events / syllables in the sonogram.

    Declaration
    public static ArrayList Shapes5(double[, ] m)
    Parameters
    Type Name Description
    Double[,] m
    Returns
    Type Description
    ArrayList
    | Improve this Doc View Source

    Signal2NoiseRatio_BandWise(Double[,])

    Declaration
    public static double[, ] Signal2NoiseRatio_BandWise(double[, ] matrix)
    Parameters
    Type Name Description
    Double[,] matrix
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    Signal2NoiseRatio_Local(Double[,], Int32)

    Calculates the local signal to noise ratio in the neighbourhood of side=window SNR is defined as local mean / local std dev. Must check that the local std dev is not too small.

    Declaration
    public static double[, ] Signal2NoiseRatio_Local(double[, ] matrix, int window)
    Parameters
    Type Name Description
    Double[,] matrix
    Int32 window
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    Sobel5X5CornerDetection(Double[,], out Boolean, out Double, out Double)

    Declaration
    public static void Sobel5X5CornerDetection(double[, ] m, out bool isCorner, out double magnitude, out double direction)
    Parameters
    Type Name Description
    Double[,] m
    Boolean isCorner
    Double magnitude
    Double direction
    | Improve this Doc View Source

    Sobel5X5RidgeDetection(Double[,])

    Declaration
    public static double[] Sobel5X5RidgeDetection(double[, ] m)
    Parameters
    Type Name Description
    Double[,] m
    Returns
    Type Description
    Double[]
    | Improve this Doc View Source

    Sobel5X5RidgeDetection(Double[,], out Boolean, out Double, out Int32)

    This version of Sobel's edge detection taken from Graig A. Lindley, Practical Image Processing which includes C code. HOWEVER MODIFED TO PROCESS 5x5 matrix MATRIX must be square with odd number dimensions.

    Declaration
    public static void Sobel5X5RidgeDetection(double[, ] m, out bool isRidge, out double magnitude, out int direction)
    Parameters
    Type Name Description
    Double[,] m
    Boolean isRidge
    Double magnitude
    Int32 direction
    | Improve this Doc View Source

    SobelEdgeDetection(Double[,])

    Declaration
    public static double[, ] SobelEdgeDetection(double[, ] m)
    Parameters
    Type Name Description
    Double[,] m
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    SobelEdgeDetection(Double[,], Double)

    This version of Sobel's edge detection taken from Graig A. Lindley, Practical Image Processing which includes C code.

    Declaration
    public static double[, ] SobelEdgeDetection(double[, ] m, double relThreshold)
    Parameters
    Type Name Description
    Double[,] m
    Double relThreshold
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    SobelRidgeDetection(Double[,])

    This version of Sobel's edge detection taken from Graig A. Lindley, Practical Image Processing which includes C code.

    Declaration
    public static double[, ] SobelRidgeDetection(double[, ] m)
    Parameters
    Type Name Description
    Double[,] m
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    SobelRidgeDetection(Double[,], out Boolean, out Double, out Double)

    This version of Sobel's edge detection taken from Graig A. Lindley, Practical Image Processing which includes C code. HOWEVER MODIFED TO PROCESS 5x5 matrix MATRIX must be square with odd number dimensions.

    Declaration
    public static void SobelRidgeDetection(double[, ] m, out bool isRidge, out double magnitude, out double direction)
    Parameters
    Type Name Description
    Double[,] m
    Boolean isRidge
    Double magnitude
    Double direction
    | Improve this Doc View Source

    SubtractAverage_BandWise(Double[,])

    Declaration
    public static double[, ] SubtractAverage_BandWise(double[, ] matrix)
    Parameters
    Type Name Description
    Double[,] matrix
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    TestCannyEdgeDetection()

    This method is a TEST method for Canny edge detection - see below.

    Declaration
    public static void TestCannyEdgeDetection()
    | Improve this Doc View Source

    TrimPercentiles(Double[,])

    Declaration
    public static double[, ] TrimPercentiles(double[, ] matrix)
    Parameters
    Type Name Description
    Double[,] matrix
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    WienerFilter(Double[,])

    Declaration
    public static double[, ] WienerFilter(double[, ] matrix)
    Parameters
    Type Name Description
    Double[,] matrix
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    WienerFilter(Double[,], Int32)

    Declaration
    public static double[, ] WienerFilter(double[, ] matrix, int NH)
    Parameters
    Type Name Description
    Double[,] matrix
    Int32 NH
    Returns
    Type Description
    Double[,]
    | Improve this Doc View Source

    WriteImage2File(Image, String)

    Declaration
    public static void WriteImage2File(Image binaryBmp, string opPath)
    Parameters
    Type Name Description
    SixLabors.ImageSharp.Image binaryBmp
    String opPath

    Extension Methods

    ObjectExtensions.NotNull(Object)
    ObjectExtensions.AsArray<T>(T)
    ObjectExtensions.AsList<T>(T)
    ObjectExtensions.Wrap<T>(T)
    SystemExtensions.BinarySerialize(Object)
    ConfigFileExtensions.NotNull(Object, FileInfo, String, String)
    ConfigFileExtensions.ValidateNotNull(Object, String, String)
    ConfigFileExtensions.ValidateLessThan<T>(Object, Nullable<T>, String, Nullable<T>, String, String)
    ExtensionsXml.SerializeObject<T>(T)
    • Improve this Doc
    • View Source
    In This Article
    • Fields
      • Colors
      • DarkColors
      • SobelX
      • SobelY
    • Methods
      • ApplyInvert(Image<Rgb24>)
      • Blur(Double[,], Int32)
      • Blur(Double[,], Int32, Int32)
      • ByteMatrix2DoublesMatrix(Byte[,])
      • CannyEdgeDetection(Image<Rgb24>, Byte, Byte)
      • CombineImagesInLine<T>(Color, Image<T>[])
      • CombineImagesInLine<T>(Image<T>[])
      • CombineImagesInLine<T>(List<Image<T>>)
      • CombineImagesVertically<T>(Image<T>[])
      • CombineImagesVertically<T>(List<Image<T>>)
      • CombineImagesVertically<T>(List<Image<T>>, Int32)
      • CombineImagesVertically<T>(Nullable<Int32>, Image<T>[])
      • ContrastStretching(Double[,], Double)
      • Convolve(Double[,], Kernal)
      • DetectHighEnergyRegions1(Double[,])
      • DetectHighEnergyRegions3(Double[,])
      • DetectLine(Double[,], Int32, Int32, Int32, Double, Int32)
      • DrawColourChart(Int32, Int32, Color[])
      • DrawMatrix(Byte[,], String)
      • DrawMatrix(Double[], String)
      • DrawMatrix(Double[,], Boolean)
      • DrawMatrix(Double[,], Double, Double, String)
      • DrawMatrix(Double[,], Int32, Int32, String)
      • DrawMatrix(Double[,], String)
      • DrawMatrixInColour(Double[,], Boolean)
      • DrawMatrixInColour(Double[,], Int32, Int32)
      • DrawMatrixInColour(Double[,], String, Boolean)
      • DrawMatrixInGrayScale(Double[,], Int32, Int32, Boolean)
      • DrawMatrixWithoutNormalisation(Double[,])
      • DrawMatrixWithoutNormalisationGreenScale(Double[,])
      • DrawNormalisedMatrix(Double[,])
      • DrawNormalisedMatrix(Double[,], Double, Double)
      • DrawReversedMatrix(Double[,])
      • DrawReversedMatrix(Double[,], String)
      • DrawReversedMatrixWithoutNormalisation(Double[,])
      • DrawReversedMDNMatrix(Matrix<Double>, String)
      • DrawRGBMatrix(Double[,], Double[,], Double[,])
      • DrawVectorInColour(Double[], Int32)
      • DrawVectorInGrayScale(Double[], Int32, Int32)
      • DrawVectorInGrayScaleWithoutNormalisation(Double[], Int32, Int32, Boolean)
      • DrawXaxisScale(Image<Rgb24>, Int32, Double, Double, Int32, Int32)
      • DrawYaxisScale(Image<Rgb24>, Int32, Double, Double, Int32)
      • FillGaps(Double[,])
      • GaussianBlur_5cell(Double[,])
      • GetColorHistogramNormalized(Image<Rgb24>, Nullable<Rectangle>)
      • GetColorPalette(Int32)
      • GetMatrixImage(Double[,])
      • GetNoise(Double[,], Int32, Int32)
      • GetRedGradientPalette()
      • GrayScale()
      • GreenScale()
      • GreyScaleImage2Matrix(Image<Rgb24>)
      • GridFilter(Double[,], Kernal)
      • MexicanHat5X5RidgeDetection(Double[,], out Boolean, out Double, out Int32)
      • PercentileThresholds(Double[,], Double, Double, out Double, out Double)
      • ReadImage2Image(String)
      • Reverse256GreyScale(Double[,])
      • Shapes_lines(Double[,])
      • Shapes_lines_bandwise(Double[,])
      • Shapes_RemoveSmall(Double[,], Int32, Int32)
      • Shapes_RemoveSmallUnattached(Double[,], Int32, Int32)
      • Shapes3(Double[,])
      • Shapes4(Double[,])
      • Shapes5(Double[,])
      • Signal2NoiseRatio_BandWise(Double[,])
      • Signal2NoiseRatio_Local(Double[,], Int32)
      • Sobel5X5CornerDetection(Double[,], out Boolean, out Double, out Double)
      • Sobel5X5RidgeDetection(Double[,])
      • Sobel5X5RidgeDetection(Double[,], out Boolean, out Double, out Int32)
      • SobelEdgeDetection(Double[,])
      • SobelEdgeDetection(Double[,], Double)
      • SobelRidgeDetection(Double[,])
      • SobelRidgeDetection(Double[,], out Boolean, out Double, out Double)
      • SubtractAverage_BandWise(Double[,])
      • TestCannyEdgeDetection()
      • TrimPercentiles(Double[,])
      • WienerFilter(Double[,])
      • WienerFilter(Double[,], Int32)
      • WriteImage2File(Image, String)
    • Extension Methods
    Generated by DocFX AP docs version: 21.7.0.4-master-e26127a50d7bd7472d47288f10e61014fb981f7f-DIRTY-CI:144 Back to top